Parametry czynnika roboczego i ich znaczenie w doborze zbiornika chemoodpornego

348

Odporność chemiczna tworzyw PE i PP na grupy związków i mieszanin związków chemicznych

TWORZYWO PE / PP ODPORNE Słabe i mocne kwasy nieorganiczne,
Kwasy organiczne
Sole nieorganiczne
Alkohole i glikole
Aldehydy i ketony
TWORZYWO PE / PP WARUNKOWO ODPORNE Kwasy utleniające i niektóre ich sole
Węglowodory alifatyczne i aromatyczne
Oleje mineralne
Estry i etery
TWORZYWO PE / PP NIEODPORNE Substancje silnie utleniające
Chlorowcowane węglowodory
Halogeny (F, Cl, Br, J)

Temperatura i gęstość substancji warunkują grubość materiału poszczególnych partii zbiornika

Gdy mamy już wybrane tworzywo odporne na daną substancję, przechodzimy do obliczeń statyki konstrukcji. W tym przypadku parametry medium warunkują grubość zastosowanego materiału cylindra, ścianek oraz dna projektowanego zbiornika (wraz ze wzrostem temperatury znacznie zmienia się elastyczność materiału, w związku z czym dla zachowania odpowiedniej statyki konstrukcji stosuje się większe grubości ścianek).

W pewnych warunkach bywa to nieracjonalne ekonomicznie, dlatego jeśli to możliwe, to dla podwyższonych temperatur preferujemy wybór znacznie sztywniejszego tworzywa, jakim jest np. PP-H (moduł elastyczności/sprężystości E dla PP-H AlphaPlus mierzony według DIN EN ISO 527 wynosi aż 1700 MPa w porównaniu do PE 100, dla którego jest to wartość 1100 MPa) lub stosowanie konstrukcji kompozytowych (poliestrowych/winyloestrowych wraz z zbrojeniem włóknem szklanym) z warstwą wykańczającą chemoodporną, ewentualnie systemu hybrydowego: kaszerowanego linera z tworzywa + konstrukcji z kompozytu.

Dodatkowo warto wspomnieć o tym, że gęstość substancji wpływa na siły powstające zwłaszcza w dolnych partiach zbiornika.

amargo

Dane nt. medium determinują technologię produkcji zbiornika chemoodpornego

W wielu procesach technologicznych wykorzystywane są substancje o znacznym stężeniu i gęstości oraz wysokiej temperaturze pracy. Gdy dojdą do tego ograniczenia przestrzeni, to przy doborze zbiornika może okazać się, że sama geometria nie pozwoli zachować jego odpowiedniej pojemności.

Z powodu sztywności oraz wysokiej wartości modułu elastyczności poszczególnych rodzajów tworzyw dąży się do ograniczenia powstawania szkodliwych naprężeń wewnątrzmateriałowych w wyniku zwijania arkuszy. Tym samym, poza wpływem parametrów medium na dobór odpowiedniego tworzywa, obliczenia wykonywane w oparciu o normę DVS mogą być decydujące jeśli chodzi o wybór technologii, w jakiej zostanie wykonany zbiornik (tj. technologia AmargTank ClassicWeld w której wykorzystuje się gotowe arkusze tworzywa lub technologia nawojowa AmargTank SafeSeamLess)  szczegóły znajdziesz na poniższych stronach.

Przykład wpływu parametrów medium chemicznego na sposób wykonania zbiornika w oparciu o obliczenia statyki według normy DVS

  • Branża: przedsiębiorstwo chemiczne
  • Medium: mieszanina związków ze znaczną ilością kwasu fosforowego o stężeniu 45%
  • Temperatura robocza: 80°C (krótkotrwała 85°C)
  • Minimalna grubość ścianki zbiornika w oparciu o obliczenia statyki według normy DVS: 40 mm (wskazania i wytyczne w zakresie możliwości wykonania cylindrów z płyt płaskich zawarte są w opracowaniu DVS)
  • Możliwa minimalna średnica wykonania cylindra po uwzględnieniu dopuszczalnego wskaźnika wydłużenia struktur krawędziowych ɛ, która pozwoliłaby uniknąć przekroczenia maksymalnych dopuszczalnych sił i naprężeń wewnątrzmateriałowych: 8000 mm

Założenia projektu wskazywały na średnicę kilkukrotnie mniejszą, aniżeli wychodzącą z obliczeń. Jeśli chodzi o wykonanie z gotowych arkuszy tworzywa, to maszyna zgrzewająca oraz zwijająca płytę w cylinder umożliwia pracę z arkuszem o grubości nawet 30–50 mm, natomiast skutkiem mogłoby być powstanie nadmiernych naprężeń w przekroju ścianki. To z kolei w perspektywie eksploatacji zbiornika mogłoby prowadzić do pęknięć do kolejnych warstw materiału, całkowitego uszkodzenia ścianek zbiornika, nieszczelnością, a nawet trwałą awarią. Z tego powodu odrzucono wykonanie metodą AmargTank ClassicWeld.

Najbardziej racjonalnym rozwiązaniem było wykonanie cylindra technologią beznaprężeniowej ekstruzji wstęgi termoplastycznego tworzywa, czyli metodą nawojową. Daje ona możliwość zastosowania dużych grubości ścianki zbiornika (nawet do 100–140 mm litej ścianki termoplastu) – nawet przy małej średnicy rzędu D = 100–200 cm oraz dużej wysokości (H = 6–10 m). Tym samym technologia nawojowa gwarantuje wykonanie niezwykle wytrzymałego zbiornika z tworzywa o dużej sztywności, przystosowanego do warunków pracy w podwyższonych temperaturach i przy medium o wysokiej gęstości.

Na zdjęciach poniżej widoczne zbiorniki wykonane metodą nawojową.

ZOSTAW ODPOWIEDŹ

Wprowadź swój komentarz!
Wprowadź swoje imię